PHARMACEUTICS (MPH)

SEMESTER - I

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES
(MPH 101T)

Scope
This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives
After completion of course student is able to know,

- Chemicals and Excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 HOURS

b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy

2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

11 Hrs

4 Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution and applications of the following: Paper chromatography, Thin Layer chromatography, Ionexchange chromatography, Column chromatography, Gas chromatography, High Performance Liquid chromatography, Affinity chromatography

5 a. Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following: Paper electrophoresis, Gel electrophoresis, Capillary electrophoresis, Zone electrophoresis, Moving boundary electrophoresis, Iso electric focusing

b. X ray Crystallography: Production of X rays, Different X ray diffraction methods, Bragg’s law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction

6 Immunological assays: RIA (Radio immuno assay), ELISA, Bioluminescence assays.

REFERENCES
DRUG DELIVERY SYSTEMS
(MPH 102T)

SCOPE
This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

OBJECTIVES
Upon completion of the course, student shall be able to understand

1. The various approaches for development of novel drug delivery systems.
2. The criteria for selection of drugs and polymers for the development of delivering system
3. The formulation and evaluation of Novel drug delivery systems.

THEORY

60 Hrs

10 Hrs

10 Hrs

10 Hrs

06 Hrs

6 Protein and Peptide Delivery: Barriers for protein delivery. Formulation and Evaluation of delivery systems of proteins and other macromolecules.

7 Vaccine delivery systems: Vaccines, uptake of antigens, single shot vaccines, mucosal and transdermal delivery of vaccines.

REFERENCES
5. S.P. Vyas and R. K. Khar, Controlled Drug Delivery-concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002

JOURNALS
1. Indian Journal of Pharmaceutical Sciences (IPA)
2. Indian drugs (IDMA)
3. Journal of controlled release (Elsevier Sciences) desirable
4. Drug Development and Industrial Pharmacy (Marcel & Decker) desirable
MODERN PHARMACEUTICS
(MPH 103T)

Scope
Course designed to impart advanced knowledge and skills required to learn various aspects and concepts at pharmaceutical industries

Objectives
Upon completion of the course, student shall be able to understand

- The elements of preformulation studies.
- The Active Pharmaceutical Ingredients and Generic drug Product development
- Industrial Management and GMP Considerations.
- Optimization Techniques & Pilot Plant Scale Up Techniques
- Stability Testing, sterilization process & packaging of dosage forms.

THEORY 60 HRS

10 Hrs

b. Optimization techniques in Pharmaceutical Formulation: Concept and parameters of optimization, Optimization techniques in pharmaceutical formulation and processing. Statistical design, Response surface method, Contour designs, Factorial designs and application in formulation

10 Hrs

10 Hrs

3 cGMP & Industrial Management: Objectives and policies of current good manufacturing practices, layout of buildings, services, equipments and their maintenance Production management: Production organization, , materials management, handling and transportation, inventory management and control, production and planning control, Sales forecasting, budget and cost control, industrial and personal relationship. Concept of Total Quality Management.

10 Hrs

5. Study of consolidation parameters; Diffusion parameters, Dissolution parameters and Pharmacokinetic parameters, Heckel plots, Similarity factors – f2 and f1, Higuchi and Peppas plot, Linearity Concept of significance, Standard deviation, Chi square test, students T-test, ANOVA test.

REFERENCES
1. Theory and Practice of Industrial Pharmacy By Lachmann and Libermann
4. Pharmaceutical Dosage forms: Parenteral medications Vol. 1-2; By Leon Lachmann.
5. Modern Pharmaceutics; By Gillbert and S. Banker.
8. Physical Pharmacy; By Alfred martin
11. Quality Assurance Guide; By Organization of Pharmaceutical producers of India.
13. How to practice GMPs; By P.P. Sharma. Vandhana Publications, Agra.
15. Pharmaceutical Preformulations; By J.J. Wells.
16. Applied production and operations management; By Evans, Anderson, Sweeney and Williams.
17. Encyclopaedia of Pharmaceutical technology, Vol I–III.
REGULATORY AFFAIRS
(MPH 104T)

Scope
Course designed to impart advanced knowledge and skills required to learn the concept of generic drug and their development, various regulatory filings in different countries, different phases of clinical trials and submitting regulatory documents: filing process of IND, NDA and ANDA
- To know the approval process of
- To know the chemistry, manufacturing controls and their regulatory importance
- To learn the documentation requirements for
- To learn the importance of

Objectives:
Upon completion of the course, it is expected that the students will be able to understand

- The Concepts of innovator and generic drugs, drug development process
- The Regulatory guidelines and guidelines for filing and approval process
- Preparation of Dossiers and their submission to regulatory agencies in different countries
- Post approval regulatory requirements for actives and drug products
- Submission of global documents in CTD/eCTD formats
- Clinical trials requirements for approvals for conducting clinical trials
- Pharmacovigilence and process of monitoring in clinical trials.

THEORY

b. Regulatory requirement for product approval: API, biologics, novel, therapies obtaining NDA, ANDA for generic drugs ways and means of US registration for foreign drugs

60 Hrs

12 Hrs

12 Hrs
CMC, post approval regulatory affairs. Regulation for combination products and medical devices. CTD and ECTD format, industry and FDA liaison. ICH - Guidelines of ICH-Q, S E, M. Regulatory requirements of EU, MHRA, TGA and ROW countries.

Non clinical drug development: Global submission of IND, NDA, ANDA. Investigation of medicinal products dossier, dossier (IMPD) and investigator brochure (IB).

Clinical trials: Developing clinical trial protocols. Institutional review board/ independent ethics committee. Formulation and working procedures informed Consent process and procedures. HIPAA- new, requirement to clinical study process, pharmacovigilance safety monitoring in clinical trials.

REFERENCES
7. www.ich.org/
8. www.fda.gov/
9. europa.eu/index_en.htm
PHARMACEUTICS PRACTICAL - I
(MPH 105PA)
1. Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
3. Experiments based on HPLC
4. Experiments based on Gas Chromatography
5. Estimation of riboflavin/quinine sulphate by fluorimetry
6. Estimation of sodium/potassium by flame photometry
7. To carry out preformulation studies of tablets.
8. To study the effect of compressional force on tablets disintegration time.
9. To study Micromericit properties of powders and granulation.

PHARMACEUTICS PRACTICAL - II
(MPH 105PB)
1. To study the effect of particle size on dissolution of a tablet.
2. To study the effect of binders on dissolution of a tablet.
3. To plot Heckal plot, Higuchi and peppas plot and determine similarity factors.
4. To perform In-vitro dissolution profile of CR/ SR marketed formulation
5. Formulation and evaluation of sustained release matrix tablets
6. Formulation and evaluation osmotically controlled DDS
7. Preparation and evaluation of Floating DDS- hydro dynamically balanced DDS
8. Formulation and evaluation of Muco adhesive tablets.
SEMESTER - II

MOLECULAR PHARMACEUTICS (NANO TECHNOLOGY & TARGETED DDS) (NTDS)
(MPH 201T)

Scope
This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

Objectives
Upon completion of the course student shall be able to understand
- The various approaches for development of novel drug delivery systems.
- The criteria for selection of drugs and polymers for the development of NTDS.
- The formulation and evaluation of novel drug delivery systems.

THEORY

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Targeted Drug Delivery Systems: Concepts, Events and biological process involved in drug targeting. Tumor targeting and Brain specific delivery.</td>
<td>THEORY 60 Hrs</td>
<td>12 Hrs</td>
</tr>
<tr>
<td>3. Micro Capsules / Micro Spheres: Types, preparation and evaluation, Monoclonal Antibodies; preparation and application, preparation and application of Niosomes, Aquasomes, Phytosomes, Electrosomes.</td>
<td></td>
<td>12 Hrs</td>
</tr>
<tr>
<td>4. Pulmonary Drug Delivery Systems: Aerosols, propellents, ContainersTypes, preparation and evaluation, Intra Nasal Route Delivery systems; Types, preparation and evaluation.</td>
<td></td>
<td>12 Hrs</td>
</tr>
</tbody>
</table>

REFERENCES
ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS
(MPH 202T)

Scope
This course is designed to impart knowledge and skills necessary for dose calculations, dose adjustments and to apply biopharmaceutics theories in practical problem solving. Basic theoretical discussions of the principles of biopharmaceutics and pharmacokinetics are provided to help the students to clarify the concepts.

Objectives
Upon completion of this course it is expected that students will be able understand,

- The basic concepts in biopharmaceutics and pharmacokinetics.
- The use raw data and derive the pharmacokinetic models and parameters the best describe the process of drug absorption, distribution, metabolism and elimination.
- The critical evaluation of biopharmaceutic studies involving drug product equivalency.
- The design and evaluation of dosage regimens of the drugs using pharmacokinetic and biopharmaceutic parameters.
- The potential clinical pharmacokinetic problems and application of basics of pharmacokinetic

THEORY 60 Hrs

3. Pharmacokinetics: Basic considerations, pharmacokinetic models, compartment modeling: one compartment model- IV bolus, IV infusion, extra-vascular. Multi compartment model: two compartment - model in brief, non-linear pharmacokinetics: cause of non-linearity, Michaelis—Menten equation, estimation of \(k_{\text{max}} \) and \(V_{\text{max}} \). Drug interactions: introduction, the effect of protein-binding interactions, the effect of tissue-binding interactions, cytochrome p450-based drug interactions, drug interactions linked to transporters.
Drug Product Performance, In Vivo: Bioavailability and Bioequivalence: drug product performance, purpose of bioavailability studies, relative and absolute availability, methods for assessing bioavailability, bioequivalence studies, design and evaluation of bioequivalence studies, study designs, crossover study designs, evaluation of the data, bioequivalence example, study submission and drug review process, biopharmaceutics classification system, methods. Permeability: In-vitro, in-situ and In-vivo methods, generic biologics (biosimilar drug products), clinical significance of bioequivalence studies, special concerns in bioavailability and bioequivalence studies, generic substitution.

Application of Pharmacokinetics: Modified-Release Drug Products, Targeted Drug Delivery Systems and Biotechnological Products.

Introduction to Pharmacokinetics and pharmacodynamic, drug interactions. Pharmacokinetics and pharmacodynamics of biotechnology drugs. Introduction, Proteins and peptides, Monoclonal antibodies, Oligonucleotides, Vaccines (immunotherapy), Gene therapies.

REFERENCES
2. Biopharmaceutics and Pharmacokinetics, A. Treatise, D. M. Brahman and Sunil B. Jaiswal, Vallab Prakashan, Pitampura, Delhi
4. Textbook of Biopharmaceutics and Pharmacokinetics, Dr. Shobha Rani R. Hiremath, Prism Book
COMPUTER AIDED DRUG DEVELOPMENT
(MPH 203T)

Scope
This course is designed to impart knowledge and skills necessary for computer applications in pharmaceutical research and development who want to understand the application of computers across the entire drug research and development process. Basic theoretical discussions of the principles of more integrated and coherent use of computerized information (informatics) in the drug development process are provided to help the students to clarify the concepts.

Objectives
Upon completion of this course it is expected that students will be able to understand,

- History of Computers in Pharmaceutical Research and Development
- Computational Modeling of Drug Disposition
- Computers in Preclinical Development
- Optimization Techniques in Pharmaceutical Formulation
- Computers in Market Analysis
- Computers in Clinical Development
- Artificial Intelligence (AI) and Robotics
- Computational fluid dynamics (CFD)

THEORY 60 Hrs

1. a. Computers in Pharmaceutical Research and Development:

 b. Quality-by-Design in Pharmaceutical Development:
 Introduction, ICH Q8 guideline, Regulatory and industry views on QbD, Scientifically based QbD - examples of application.

c. Computers in Clinical Development: Clinical Data Collection and Management, Regulation of Computer Systems

5 Artificial Intelligence (AI), Robotics and Computational fluid dynamics: General overview, Pharmaceutical Automation, Pharmaceutical applications, Advantages and Disadvantages. Current Challenges and Future Directions.

REFERENCES
FORMULATION DEVELOPMENT OF PHARMACEUTICAL AND COSMETIC PRODUCTS
(MPH204T)

Scope
This course is designed to impart knowledge and skills necessary to train the students on par with the routine of Industrial activities in R&D and F&D.

Objectives
On completion of this course it is expected that students will be able to understand-
The scheduled activities in a Pharmaceutical firm.
The pre formulation studies of pilot batches of pharmaceutical industry. The significance of dissolution and product stability

THEORY 60 Hrs

1. Preformulation Studies: 12 Hrs
 Molecular optimization of APIs (drug substances), crystal morphology and variations, powder flow, structure modification, drug-excipient compatibility studies, methods of determination.

2. Formulation Additives: 12 Hrs
 Study of different formulation additives, factors influencing their incorporation, role of formulation development and processing, new developments in excipient science. Design of experiments – factorial design for product and process development.

3. Solubility & Dissolution: 12 Hrs

4. Product Stability: 12 Hrs

5. Cosmetics: 12 Hrs
 Formulation, Evaluation and packaging of the following cosmetic products: Dentrifices like tooth powders, pastes and gels. Manicure preparations like nail polish, lipsticks, eye lashes, Baby care products, Moisturizing cream, vanishing cream, cold cream, shampoo, Soaps and syndetbars
REFERENCES
17. Encyclopaedia of Pharm. Technology, Vol I – III.
PHARMACEUTICS PRACTICAL - III
(MPH 205PA)
1. To study the effect of temperature change, non solvent addition, incompatible polymer addition in microcapsules preparation
2. Preparation and evaluation of Alginate beads
3. Formulation and evaluation of gelatin/albumin microspheres
4. Formulation and evaluation of liposomes/niosomes
5. Formulation and evaluation of spherules
6. Improvement of dissolution characteristics of slightly soluble drug by Solid dispersion technique.
7. Comparison of dissolution of two different marketed products/brands
8. Protein binding studies of a highly protein bound drug & poorly protein bound drug
9. Bioavailability studies of Paracetamol in animals.
10. Pharmacokinetic and IVIVC data analysis by Winnolinc® software
11. In vitro cell studies for permeability and metabolism

PHARMACEUTICS PRACTICAL - IV
(MPH 205PB)
1. DoE Using Design Expert® Software
2. Formulation data analysis Using Design Expert® Software
3. Quality-by-Design in Pharmaceutical Development
4. Computer Simulations in Pharmacokinetics and Pharmacodynamics
5. Computational Modeling Of Drug Disposition
6. To develop Clinical Data Collection manual
8. Development and evaluation of Creams
9. Development and evaluation of Shampoo and Toothpaste base
10. Formulation Development of Multi Vitamin Syrup
11. Use of Optimization techniques in Formulation Development of Tablets